3.182 \(\int \frac{(a+a \sec (c+d x)) (A+B \sec (c+d x))}{\sqrt{\sec (c+d x)}} \, dx\)

Optimal. Leaf size=106 \[ \frac{2 a (A+B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )}{d}+\frac{2 a (A-B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 a B \sin (c+d x) \sqrt{\sec (c+d x)}}{d} \]

[Out]

(2*a*(A - B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (2*a*(A + B)*Sqrt[Cos[c + d*
x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (2*a*B*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/d

________________________________________________________________________________________

Rubi [A]  time = 0.134114, antiderivative size = 106, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 31, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.161, Rules used = {3997, 3787, 3771, 2639, 2641} \[ \frac{2 a (A+B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 a (A-B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 a B \sin (c+d x) \sqrt{\sec (c+d x)}}{d} \]

Antiderivative was successfully verified.

[In]

Int[((a + a*Sec[c + d*x])*(A + B*Sec[c + d*x]))/Sqrt[Sec[c + d*x]],x]

[Out]

(2*a*(A - B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (2*a*(A + B)*Sqrt[Cos[c + d*
x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (2*a*B*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/d

Rule 3997

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))*(csc[(e_.) + (f_.)*(x_)]*(B_.
) + (A_)), x_Symbol] :> -Simp[(b*B*Cot[e + f*x]*(d*Csc[e + f*x])^n)/(f*(n + 1)), x] + Dist[1/(n + 1), Int[(d*C
sc[e + f*x])^n*Simp[A*a*(n + 1) + B*b*n + (A*b + B*a)*(n + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f
, A, B}, x] && NeQ[A*b - a*B, 0] &&  !LeQ[n, -1]

Rule 3787

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{(a+a \sec (c+d x)) (A+B \sec (c+d x))}{\sqrt{\sec (c+d x)}} \, dx &=\frac{2 a B \sqrt{\sec (c+d x)} \sin (c+d x)}{d}+2 \int \frac{\frac{1}{2} a (A-B)+\frac{1}{2} a (A+B) \sec (c+d x)}{\sqrt{\sec (c+d x)}} \, dx\\ &=\frac{2 a B \sqrt{\sec (c+d x)} \sin (c+d x)}{d}+(a (A-B)) \int \frac{1}{\sqrt{\sec (c+d x)}} \, dx+(a (A+B)) \int \sqrt{\sec (c+d x)} \, dx\\ &=\frac{2 a B \sqrt{\sec (c+d x)} \sin (c+d x)}{d}+\left (a (A-B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx+\left (a (A+B) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{2 a (A-B) \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{d}+\frac{2 a (A+B) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{d}+\frac{2 a B \sqrt{\sec (c+d x)} \sin (c+d x)}{d}\\ \end{align*}

Mathematica [A]  time = 0.298746, size = 77, normalized size = 0.73 \[ \frac{2 a \sqrt{\sec (c+d x)} \left ((A+B) \sqrt{\cos (c+d x)} \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )+(A-B) \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )+B \sin (c+d x)\right )}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + a*Sec[c + d*x])*(A + B*Sec[c + d*x]))/Sqrt[Sec[c + d*x]],x]

[Out]

(2*a*Sqrt[Sec[c + d*x]]*((A - B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2] + (A + B)*Sqrt[Cos[c + d*x]]*Ell
ipticF[(c + d*x)/2, 2] + B*Sin[c + d*x]))/d

________________________________________________________________________________________

Maple [A]  time = 1.761, size = 240, normalized size = 2.3 \begin{align*} -2\,{\frac{a \left ( A\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) -A\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) +B\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) +B\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) -2\,B\cos \left ( 1/2\,dx+c/2 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2} \right ) }{\sin \left ( 1/2\,dx+c/2 \right ) \sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))*(A+B*sec(d*x+c))/sec(d*x+c)^(1/2),x)

[Out]

-2*a*(A*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-A*
(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+B*(2*sin(1
/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+B*(2*sin(1/2*d*x+1
/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-2*B*cos(1/2*d*x+1/2*c)*sin
(1/2*d*x+1/2*c)^2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \sec \left (d x + c\right ) + A\right )}{\left (a \sec \left (d x + c\right ) + a\right )}}{\sqrt{\sec \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))*(A+B*sec(d*x+c))/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)/sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{B a \sec \left (d x + c\right )^{2} +{\left (A + B\right )} a \sec \left (d x + c\right ) + A a}{\sqrt{\sec \left (d x + c\right )}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))*(A+B*sec(d*x+c))/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

integral((B*a*sec(d*x + c)^2 + (A + B)*a*sec(d*x + c) + A*a)/sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} a \left (\int \frac{A}{\sqrt{\sec{\left (c + d x \right )}}}\, dx + \int A \sqrt{\sec{\left (c + d x \right )}}\, dx + \int B \sqrt{\sec{\left (c + d x \right )}}\, dx + \int B \sec ^{\frac{3}{2}}{\left (c + d x \right )}\, dx\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))*(A+B*sec(d*x+c))/sec(d*x+c)**(1/2),x)

[Out]

a*(Integral(A/sqrt(sec(c + d*x)), x) + Integral(A*sqrt(sec(c + d*x)), x) + Integral(B*sqrt(sec(c + d*x)), x) +
 Integral(B*sec(c + d*x)**(3/2), x))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \sec \left (d x + c\right ) + A\right )}{\left (a \sec \left (d x + c\right ) + a\right )}}{\sqrt{\sec \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))*(A+B*sec(d*x+c))/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)/sqrt(sec(d*x + c)), x)